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Abstract 

Cognitive radio is a low-cost communication system, which can choose 

the available frequencies and waveforms automatically on the premise of 

avoiding interfering the licensed users. The spectrum sensing is the key 

enabling technology in cognitive radio networks. It is able to fill voids in 

the wireless spectrum and can dramatically increase spectral efficiency. 

 In this book, we will know the techniques to minimize the energy 

consumption and we will use MATLAB to simulate the received signals 

from the cognitive radio networks and an energy detector to detect 

whether the spectrum is being used. The project also compares the 

theoretical value and the simulated result and then describes the 

relationship between the signal to noise ratio (SNR) and the detections, 

and the result will show that with the increasing of the SNR (from 10 dB 

to 0) the detections we get also increased and within 7 dB and 5 dB, the 

increasing slope is the largest. So, the SNR influences the detections. It 

indicates that with the increasing of the SNR, the more spectrums which 

are occupied we can detect. At last, we will be talking about the future 

work. 
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Chapter One 

Introduction 

1.1. Overview 

Radio spectrum is a vitally important one that we use in our day-to-day 

life. The applications of the Radio spectrum are vast, some of them are 

used to transmit information wirelessly through television, radio 

broadcasting, mobile phones, and Wi-Fi to communications systems for 

the emergency services, GPS, and radar, etc., Hence many critical 

services rely on the spectrum and thus it creates an indispensable part of 

all of our lives and one that is habitually taken for granted. Meanwhile, 

the increase in demand for the transmission of information, swift 

communications, and higher definition media may cause scarcity of 

spectrum usage. This might occur due to the outstrip of the spectrum 

supply. The key factor for the swift wireless communication which aids 

the rising tide of data is the availability of more spectrums. Moreover, it 

is a naturally available limited resource which has been already 

encumbered heavily. 

Therefore, managing the available spectrum is predominantly important 

as well as a crucial task for the government. Radio waves compromise a 

specific part of the electromagnetic spectrum, which is the combination 

of many waves such as X-ray, Infrared waves, and light waves. However, 

the electromagnetic spectrum is classified into different waves 

correspondingly with their frequencies, which are estimated in Hertz [1]. 

However, the radio spectrum bounded from the low-frequency level 10 

kHz to high-frequency level 100 GHz. While described in terms of 

wavelength the low-frequencies are about 30km long and high 

frequencies are about 3mm. 
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The Radio spectrum is divided into bands corresponding to their 

frequencies and exploited for several services. For example, in Europe, 

Asia, the Middle East, and Africa, the FM radio band is utilized for the 

radio broadcast and operates over 87.5 MHz-108 MHz Usually, the band 

is then subdivided into channels and is used for transmitting the services 

[1]. Thus, the individual channels in the FM band represent the separate 

radio stations. Furthermore, the increasing demand for higher resolution 

images and videos can cause scarcity of available spectrum, and hence 

reconfigurable radio terminal is the best available option for the next 

generation. By enhancing proper radio management services the 

terminals can be coercively modified into more effective to aid spectrum 

resources over intricate diversified networks and limited wireless 

networks. 

Other important parameters to be considered while dumping the 

information in a wireless communication network is radio frequency 

allocation. Moreover, most of the RF spectrum is allocated while some of 

them are either overexploited or underexploited. Besides, these 

underexploited spectrums are called spectrum holes or vacant spectrum 

[2]. However, Spectrum Hole is a key term used in Cognitive radio in 

subjects with the spectral band. The term Cognitive Radio was first 

utilized by Mitola et al in [3]. Since the Cognitive radio network has the 

advantage of sensing the spectrum holes without any intricate, it can 

effortlessly adapt to the surrounding radio environment by applying its 

intelligence. Hence, it can seamlessly access the licensed spectrum more 

effectively and efficiently [4]. To enhance energy efficiency in all aspects 

many works have been implemented by the researchers. Nevertheless, 

some of them lack efficiency and some attain local optimization instead 

of global search optimization very easily. So, this paper introduces the 



 
 

3 
 

Fractional optimization model which combines the GWO and fractional 

CS algorithm to enhance the random walk to avert the local optimization 

problem. Thus, this method effectively provides the best solution that is 

an optimized solution. 

1.2. Cognitive Radio 

Wireless devices that communicate with one another using 

electromagnetic radio spectrum suffer from interference in a way or 

another. One consequence of this phenomenon is that such devices cannot 

usually operate on the same frequency band. The traditional approach to 

alleviate this issue has been to assign specific frequency bands of the 

radio spectrum to specific licensed users, such as TV broadcasters. The 

licensed users are often referred as Primary Users (PU) of the network, 

and the Secondary Users (SU), such as certain mobile devices, are not 

allowed to transmit on the band allocated to them. This policy is called 

Fixed Spectrum Access (FSA) [5]. Fast evolution of wireless 

communication systems has led to a situation in which the radio spectrum 

is almost fully allocated to PU’s. This is called the spectrum scarcity 

problem; the radio spectrum is becoming a limited resource and thus 

cannot support the increasing number of wireless devices infinitely [5, 6]. 

However, recent studies and measurements in various countries show that 

significant part of the radio spectrum is inefficiently used, utilization 

being in the range of 5% to 50% [7–9]. Therefore, it could be concluded 

that instead of the spectral scarcity, the inefficient utilization of the radio 

spectrum should be of the main concern in today’s radio communication 

policy. The emerging radio technologies are intended to allow the 

utilization of locally unoccupied frequency bands by the secondary users 

without interfering to the primary users. Therefore, the communication 

capacity of secondary users is strongly dependent on reliable and efficient 
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detection of primary users and spectral opportunities by the means of 

spectrum sensing or geolocation-based databases. Software Defined 

Radios (SDR) that align their communication based on the detection of 

primary users are commonly referred as Cognitive Radios (CR) [10, 11]. 

A definition of cognitive radio that is widely referred to in today’s 

literature is presented by Haykin in [7]: Cognitive Radio is defined as an 

intelligent wireless communication system that is aware of its 

surrounding environment and uses the methodology of understanding by 

building to learn from the environment and adapt its internal states to 

statistical variations in the incoming RF stimuli by making corresponding 

changes in certain operating parameters (e.g. transmit power, carrier 

frequency, and modulation strategy) in real time with two primary 

objectives in mind: One: highly reliable communication whenever and 

wherever needed, Second: efficient utilization of the radio spectrum. 

 

Figure (1.1): Opportunistic spectrum access overview. 

1.3. The Advantages of Cognitive Radio 

1. Overcome radio spectrum scarcity. 
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2. Avoid intentional radio jamming scenarios. 

3. Switch to power saving protocol. 

4. Improve satellite communications. 

5. Improves quality of service (QoS). 

1.4. Disadvantages of Cognitive Radio 

1. Require prior information of the primary user. 

2. Poor performance for low SNR cannot differentiate users. 

3. Require partial prior information. 

4. High sampling rate. 

5. High computational cost. 

1.5. Energy Efficient Spectrum Sensing 

The SS process increases the energy consumption of sensing devices 

[12]. More often these devices will be energy constrained. Thus excessive 

SS, although critical for providing accurate information about the radio 

environment may lead to premature depletion of the sensing devices 

battery and consequently shorten its lifetime. Energy efficiency is thus a 

pertinent issue in a CRN. As the number of wireless devices and 

equipment continue to increase, there will always be a corresponding 

increase in the demand for more energy supply and a constant pressure in 

crafting out more energy efficient devices.                                                   

The importance in optimizing energy efficiency in cognitive radio 

networks are numerous but most of them points to the issue of design, 

green communications policy, savings as regards to monetary cost and 

end users’ gratification and fulfillment. The more the energy being 
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expended a wireless device, the more the heat due to the fact that energy 

used up in wireless devices gives rise to heat. Environmental issues such 

as green-house gas problem have also been a major source of concern to 

various government agencies around the world. The more energy being 

used, the more green-house gas is being produced. Due to this reason, a 

lot of compulsory and non-compulsory standards now necessitate 

wireless devices to be more energy efficient. there are many technologies 

that contribute to increasing energy efficiency, but most of them are 

almost not without flaws apart from the cost of a dedicated WSNs, WSN 

sensing the spectrum for CRNs is the best of all techniques as energy 

wasted by CRN in SS is almost zero.  

Any CR device can start searching spectrum holes which are indicated in 

the database. If database shows some real-time spectrum holes then CR 

devices can directly start using it otherwise from the historic information 

it can understand Primary User’s usage pattern in that region and start 

spectrum sensing to find out the spectrum holes. As the CR device knows 

about primary signal characteristics in a particular time from database, 

spectrum sensing can be less complex, accurate and less time consuming. 

And by combining information from the database, history of primary 

user’s usage patterns and signal characteristics of primary users, CR 

devices need not search the entire spectrum for availability but can rather 

zone in on a particular region. This process will save time and battery 

consumption. 

1.6. The Aim of Book  

The aim of this book is to comprehend the utilization of spectrum sensing 

in cognitive radio networks, and investigate the technique of the spectrum 

sensing. and minimize the energy consumption by different techniques. 
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We will use mat lab to simulate the signals from the cognitive radio 

networks and an energy detector to determine the status of the primary 

users. After getting the result, try to find the relationship between the 

factor SNR to and the final detections and investigate how the SNR 

influence the detections. Comparing the theoretical value and the 

measured value to determine whether the simulation working 

successfully. 

1.7. Book Organization 

The project was organized as following: 

Chapter one is a simple introduction about the radio spectrum. 

Chapter two about cognitive radio system (CRS). 

Chapter three about system and mathematical model. 

Chapter four about simulation and results. 

Chapter five conclusion and future work. 
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Chapter Two 

Cognitive radio system (CRS) 

2.1. Definition and High-Level Concept 

There are different definitions of cognitive radio system (CRS), from 

many authors and organizations. The definition giving the common 

understanding about CRS and now adopted for most is from International 

Telecommunication Union (ITU) [13]. CRS is a radio system employing 

technology that allows the system: 

(i) to obtain knowledge of its operational and geographical environment, 

established policies, and its internal state (cognitive capability); 

(ii) to dynamically and autonomously adjust its operational parameters 

and protocols according to its obtained knowledge in order to achieve 

predefined objectives (reconfigurable capability); 

(iii) to learn from the results obtained (learning capability). At high level 

concept presented in Figure 2, the main components of the CRS are the 

intelligent management system and reconfigurable radios [14,15]. CRS is 

also able to take action including obtaining knowledge, the CRS 

dynamically and autonomously makes reconfiguration decisions 

according to some predefined objectives, for example, in order to 

improve efficiency of spectrum usage. Based on the decisions made, the 

CRS adjusts operational parameters and protocols of its reconfigurable 

radios. Such parameters include output power, frequency range, 

modulation type, and radio access technology (RAT) protocols. Software-

defined radio (SDR) approach is used to implement the reconfigurations. 

Also, the CRS can learn from its decisions to improve its future decisions. 

The results of learning contribute to both obtaining knowledge and 

decision making. CRS can be classified into two types: heterogeneous 
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CRS and spectrum sharing CRS. The first type uses the network centric 

approach where one or several operators operate several radio access 

networks (RANs) using the same or different RATs. Frequency bands 

allocated to these RANs are fixed. Cognitive network optimizes radio 

resources and improves the Qi's. The second type of CRS is sharing CRS, 

where several RANs using the same or different RATs can share the same 

frequency band by using the unoccupied subbands in an intelligent and 

coordinated way. Most of standardization activities are related to this type 

of CRS 

 

Figure (2.1): Block diagram of cognitive radio. 

2.2. System model 

We consider CSS in a centralized CR network consisting of a cognitive 

base station (fusion center) and a number of SUs. In the network, each 

SU sends its sensing data to the base station, and the base station 

combines the sensing data from different SUs and makes the final 

decision on the presence or absence of the PUs. We assume the sensing 

data are sent from the SUs to the base station free of error throughout this 

article. In this section, energy detection and CSS are introduced. 
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2.3. Energy detection 

The target of spectrum sensing in CR network is to determine whether a 

licensed band is currently occupied by any PUs or not. This can be 

formulated into a binary hypothesis testing problem as. [16] 

x(n) = {  h(n)s(n) + ω(n),     H1 
𝜔(𝑛) ,                         𝐻0 

                                                        (2.1) 

where n = 0, 1, ... , N; and N is the number of samples. The PU signal, 

background noise, and received signal are denoted by s(n), ω(n), and 

x(n), respectively. h(n) is the impulse response of the channel between 

the SU and PU. H0 represents the absence of primary signal, while H1 

represents the presence of primary signal. The noise ω(n) is assumed to 

be additive white Gaussian noise with zero mean and unit variance (i.e., 

ω(n) ∼ N(0, 1)). For ease of analysis, we assume that the channel impulse 

response h(n) is unchanged during the sensing process, i.e., h(n) = h [17]. 

Mathematically, the problem can be formulated as a binary hypothesis 

testing as follows:  

T = 
1

𝑁
 ∑ |𝑥 (𝑛)|2 𝑁

𝑛=1   {  < 𝜆        𝐻0
> 𝜆        𝐻1                                             (2.2) 

where T is the test statistic, and λ is the predetermined threshold. Let σs
2 

and σω
2 denote the transmitted signal power and noise power, 

respectively, and assume that σω
2 = 1. Define γ = σs

2 /σω
2 as the SNR 

value. The local false alarm and detection probability of the SU can be 

represented as [18] 

= Pr (T > λ|H0) fP 

= Q ( (λ − 1) √
𝑁

2
  )                                                                        (2.3) 

Pd= Pr (T > λ|H1)  
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= Q ( (λ − γ − 1) √
𝑁

2(𝛾 + 1)2
  )                                                      (2.4) 

where Q(.) is the Q-function. 

2.4. CSS 

We consider a CR network composed of K SUs and a base station (fusion 

center), as shown in Figure (2.2). We assume that each SU performs 

energy detection independently and then sends the local decision to the 

base station, which will fuse all available local decision information to 

infer the absence or presence of the PU. 

 

Figure (2.2): cooperative spectrum sensing structure in a CR network. 

In the conventional hard combination CSS scheme, each cooperative 

partner i makes a binary decision based on its local observation and then 

forwards its one-bit decision Di (Di = 1 stands for the presence of the PU, 

and Di = 0 stands for the absence of the PU) to the base station. At the 

base station, all one-bit decisions are fused together according to the logic 

decision fusion rule [19,20], and the final decision can be obtained as 

Y = ∑ 𝐷𝑖𝐾
𝑖=1  {  < 𝑘        𝐻0

≥ 𝑘        𝐻1                                                             (2.5) 
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where H0 and H1 denote the decision made by the base station that the 

PU is present or absent, respectively. The threshold k is an integer, 

representing the “n-out-of-K” rule. It can be seen that the OR rule 

corresponds to the case of  k = 1, the AND rule corresponds to the case of 

k = K, and in the VOTING rule k is equal to the minimal integer larger 

than K/2 [19]. 

Only one-bit decision information is used in the hard combination CSS, 

and thus its detection performance is limited. Soft combination CSS 

scheme uses the accurate sensing results from the SUs, and it can achieve 

the better performance; however, its overhead is large. Two-bit overhead 

combination CSS scheme can obtain relatively higher performance than 

hard combination CSS with lower overhead than soft combination CSS, 

and it makes a trade-off between hard and soft combination CSS scheme. 

2.5. TSEEOB-CSS 

The TSTB-CSS algorithm proposed in [21] can improve the performance 

of the conventional hard combination CSS algorithm; however, its 

sensing time and energy consumption are the same as those in hard 

combination CSS. In this article, two TSEEOB-CSS algorithms are 

presented with almost the same sensing accuracy, and their sensing time 

and energy consumption are reduced greatly especially when the SNR is 

high or no PU exists. 

In the proposed algorithms, we try to reduce the energy consumption of 

conventional CSS scheme with Ns samples by designing two TSEEOB-

CSS schemes with αNs-sample first stage detection and (1 − α)Ns-sample 

second stage detection. We assume that, in the Ns-sample detection of 

these three algorithms, the presence/absence status of the PU does not 

change. In other words, the received signal is stationary with the 
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observation time T (i.e., Ns samples); this assumption is commonly used 

in the literature [22-25]. 

2.5.1. The first proposed algorithm 

The first proposed two-stage one-bit CSS scheme is shown in Figure (2.3) 

, and the proposed scheme is represented by the following steps: 

Step 1: Perform the first stage coarse energy detection with αNs samples 

at each SU, where 0 <α< 0.5. The sensing result of the SUi can be 

calculated as 

.6)2(                                                             ∑ |𝑥𝑖 (𝑛)|2𝛼𝑁𝑠
𝑛=1  

1

𝛼𝑁𝑠 
=  iT1 

where xi(n) is the nth sample of the signal to be sensed at the SUi. If the 

detection result of SUi(i = 1, 2, ... , K) T1i > λ1 +∆, sends the local 

decision D1i = 1 to the fusion center indicating that PUs exist; if T1i < λ1 

−∆, sends the local decision D1i = 0 to the fusion center indicating that no 

PU exists; if λ1 − ∆ ≤ T1i ≤ λ1 +∆, nothing will be sent. λ1 and ∆ are two 

positive parameters that define the upper threshold λ1 + ∆ and the lower 

threshold λ1 − ∆ in the first stage detection. 

Step 2: The first stage local decisions D1i are fused at the fusion center, 

and the final decision DF can be obtained as 

DF = {  
0,                  𝑀𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 

𝐾

2𝑆𝑈𝑠
 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑃𝑈

 𝐹𝑖𝑛𝑎𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

1,         𝑀𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝐾/2𝑆𝑈𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑃𝑈
                 (2.7) 

 



 
 

14 
 

 

Figure (2.3): The proposed two-stage one-bit cooperative spectrum 

sensing scheme. 

If the final decision DF can be obtained, DF is sent to each SU. If the 

final decision DF cannot be obtained, nothing will be done Step 3: If the 

final decision DF is received by the SUs, goes to step 6. If the final 

decision DF is not received by the SUs after τ period, perform the second 

stage fine energy detection with (1 − α)Ns samples, and the sensing result 

of the SUi can be calculated as. 

𝑇2𝑖 =  
1

(1 − 𝛼)𝑁𝑠 
 ∑ |𝑥𝑖 (𝑛)|2 

(1−𝛼)𝑁𝑠

𝑛=1 

                                          (2.8) 

Assume τ << T1 < T2 in Figure (2.3), and thus τ can be ignored 

compared with T1 and T2. Step 4: Local decision D2i (i = 1, 2, ... , K) is 

obtained through the second stage fine energy detection as 

.9)(2                                                                    0       𝑇2𝑖 < 𝜆2
1        𝑇2𝑖 ≥ 𝜆2{= i D2 

where T2i is the second stage local sensing result of SUi using energy 

detection. Then the local decisions D2i are sent to the fusion center. 

Step 5: The second stage local decisions D2i are fused at the fusion 

center, and the final decision DF can be obtained according to 

DF = {  0                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

1        ∑  𝐷2𝑖 ≥ 𝐾/2𝑘
𝑖=1  

                                                      (2.10) 

DF is sent to each SU, and goes to step 6. 
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Step 6: Current detection ends. 

The first TSEEOB-CSS algorithm described above can achieve almost 

the same performance as the conventional hard combination CSS 

algorithm. Its sensing time and energy consumption are reduced 

obviously when no PU exists or the SNR of PU is high, and therefore the 

sensing time can be saved and the energy efficiency can be improved 

effectively. 

2.5.2. The second proposed algorithm  

The first proposed TSEEOB-CSS algorithm above can achieve better 

performance with lower energy; however, the sensing results in the first 

stage coarse detection are not fully utilized, and its energy efficiency can 

still be improved. Thus, a second TSEEOB-CSS algorithm is proposed 

based on the first one, and its structure can also be described in Figure 

(2.3). The second TSEEOB-CSS scheme is represented by the following 

steps: 

Step 1: Perform the first stage coarse energy detection with αNs samples 

at each SU as in Equation (2.6). If the detection result of SUi (i = 1, 2, ... , 

K) T1i > λ1 +∆, sends the local decision D1i = 1 to the fusion center 

indicating that PUs exist; if T1i < λ1 −∆, sends the local decision D1i = 0 

to the fusion center indicating that no PU exists; if λ1 − ∆ ≤ T1i ≤ λ1 +∆, 

nothing will be sent. 

Step 2: The first stage local decisions D1i are fused at the fusion center, 

and the final decision DF can be obtained as in Equation (2.7). If the final 

decision DF can be obtained, DF is sent to each SU. If the final decision 

DF cannot be obtained, nothing will be done. 
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Step 3: If the final decision DF is received by the SUs, goes to step 6. If 

the final decision DF is not received by the SUs after τ period, for the 

SUs that did not obtain the local decision D1 at the first stage, perform 

the second stage fine energy detection with (1 − α)Ns samples as in 

Equation (2.8), and for the SUs that obtained the local decision at the first 

stage, no more processing is needed. Assume τ << T1 < T2 in Figure 

(2.3), and thus τ can be ignored compared with T1 and T2. 

Step 4: Local decision D2i(i = 1, 2, ... , K) is obtained through the second 

stage fine energy detection as 

D2i = {  0,                         𝑇2𝑖 < 𝜆2,𝑤ℎ𝑒𝑛 𝐷1𝑖 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑
 𝐷1𝑖,𝑤ℎ𝑒𝑛𝐷1𝑖 𝑤𝑎𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑.                                                

1,                          𝑇2𝑖 ≥ 𝜆2,𝑤ℎ𝑒𝑛 𝐷1𝑖 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑
                  (2.11) 

where T2i is the second stage local sensing result of SUi using energy 

detection, D1i is the local decision of the SUi in the first stage. Then the 

local decisions D2i are sent to the fusion center. 

Step 5: The second stage local decisions D2i are fused at the fusion 

center, and the final decision DF can be obtained according to 

DF = {  0                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

1        ∑  𝐷2𝑖 ≥ 𝐾/2𝑘
𝑖=1  

                                                         (2.12) 

DF is sent to each SU, and goes to step 6. 

Step 6: Current detection ends. 

The first proposed TSEEOB-CSS algorithm can achieve excellent 

performance with less energy consumption; however, the local decisions 

of the coarse detection are not fully used. The local decisions of the 

coarse detection are obtained through two-threshold sensing scheme, and 

they are more reliable than those of the conventional sensing with the 

same number of samples. If the local decisions of the coarse detection are 
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utilized in the algorithm, its energy efficiency can be improved. Thus, the 

second TSEEOB-CSS algorithm is proposed based on the first one, which 

uses the local decision of the coarse detection to improve the energy 

efficiency of the algorithm with the same length of sensing time. 

However, the detection performance of the second TSEEOB-CSS 

algorithm is worse than the first TSEEOB-CSS algorithm. Thus, we 

should make a trade-off between the energy efficiency and detection 

performance to choose the proper algorithm in practical applications. 
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Chapter Three 

System And Mathematical Model 

 

3.1. Energy Efficient Spectrum Sensing Techniques for Cognitive 

Radio Networks 

Some of the energy efficient spectrum sensing techniques are discussed 

below. 

3.1.1. Reinforcement Learning Based Energy Efficient spectrum 

Sensing  

Reinforcement learning [26] is a trial-and-error machine learning 

approach in which the decision maker, called the agent, observes the state 

of the environment and chooses actions that lead to rewards and new 

states. Actions leading to desired outcomes are given higher rewards, 

which reinforce these actions, thus making them more likely to be chosen 

again in similar situations in the future. Consequently, in reinforcement 

learning, the agent or agents are faced with the exploitation versus 

exploration tradeoff, i.e., whether to exploit the current best action or to 

explore other actions in hope of finding a better one. Energy efficiency is 

achieved by minimizing the number of assigned sensors per each sub 

band under a constraint on miss detection probability. The Reinforcement 

Learning Based Spectrum Sensing Policy balances between exploring and 

exploiting different parts of the radio spectrum and different sensing 

assignments. 
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3.1.2. History Assisted energy efficient Spectrum sensing  

The history assisted energy efficient spectrum sensing scheme [27] 

employs an Iteratively developed history processing database. The usage 

of history helps predicting PU activity and results into reduced spectrum 

scanning by SUs thereby improving the sensing related energy 

consumption. Despite the fact that continuous scanning of the spectrum 

can fully capture the opportunities for the SUs, however it incurs costs in 

terms of increased energy consumption and sensing time. The history 

assisted spectrum sensing technique employs a database to process the 

spectrum sensing history and help SUs make a decision towards 

utilization of an empty space or to perform continued spectrum sensing. It 

is shown that the increased history utilization helps SUs conserve energy 

during the spectrum sensing. 

3.1.3. Wireless sensor network assisted Cognitive Radio Networks  

An energy efficient network architecture that consists of ad hoc (mobile) 

cognitive radios (CRs) assisted by infrastructure wireless sensor nodes 

can reduce the energy consumption by the cognitive radios as the 

spectrum sensing is done solely by the sensor network. Here sensor nodes 

within communications range of each CR are grouped into a cluster and 

the clusters of CRs are regularly updated according to the random 

mobility of the CRs. . An ad hoc CR, which is a cluster head, is 

surrounded by a cluster of infrastructure sensor nodes within one-hop 

communication range of the CR, and each cluster is further partitioned 

into subsets. The energy consumption is reduced by dividing each cluster 

into disjoint subsets with overlapped sensing coverage of primary user 

(PU) activity. Sleep wake scheduling for the subsets based on the 
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statistical behavior of the PU can impart further energy efficiency of the 

CRN [28]. 

3.1.4. Energy efficiency through adaptive spectrum probing  

There is an optimal spectrum sensing interval which reduces total energy 

consumption. In the an adaptive spectrum sensing time interval strategy, 

SUs can adjust the next spectrum sensing time interval according to the 

current spectrum sensing results (namely, channel status).It’s a dynamic 

spectrum sensing strategy in which the next spectrum sensing time is 

adaptive and based on current spectrum sensing results. That is, spectrum 

sensing time interval is not fixed, according to the current sensing result 

[29]. 

3.2. Threshold setting and performance analysis  

The parameters are important to the proposed algorithms, so in this 

section, the threshold setting is discussed. In addition, the energy 

efficiency and time-saving performance of the algorithms are further 

analyzed .                                                                                                     

 3.3. Analysis of threshold setting  

There are three important parameters in the two proposed TSEEOB-CSS 

algorithms, λ1, λ2, and ∆. These parameters affect the detection 

performance greatly. Thus, we discuss the parameters setting, and give 

some rules as follows.[30]                                                                        

3.3.1. The rules in setting ∆ 

Remark 1. For a fixed value of λ1, the larger the value of ∆ is, the better 

the detection performance can be achieved with longer sensing time. 

, follows a 2nal x(n), |x(n)|Assume the square of the sampled sig
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. The sensing result of the first 2distribution with mean μ and variance σ

stage detection can be described as                                                             

T = 
1

𝛼𝑁𝑠 
 ∑ |𝑥 (𝑛)|  2𝛼𝑁𝑠

𝑛=1                                                              (3.1) 

/(αNs) 2which follows Gaussian distribution with mean μ and variance σ

according to the central limit theorem. Therefore, the probability the final 

decision obtained at each SU after the first stage coarse detection can be 

expressed as                                                                                             

(3.2)                                    p = 1- ∫  
1

√2𝜋𝛼𝑁𝑠𝜎
 𝑒

− 
(𝑥−𝜇)2

2𝜎2/(𝛼𝑁𝑠)
 
𝑑𝑥

𝜆1+∆

𝜆1−∆
 

Hence, when ∆ is larger, and the probability (1 − P) indicating the need of 

second stage fine detection correspondingly becomes larger, which means 

the sensing time becomes longer. Also, the detection performance 

becomes better for the probability of second stage detection is larger. 

Remark 2: ∆ should be smaller as the sample number αNs of the first 

stage coarse detection becomes larger. Assume the background noise 

ω(n) in (1) follows Gaussian distribution with zero mean and unit 

, 2the square of ω(n), |ω(n)| N(0, 1)), and thus ∼variance (i.e., ω(n) 

follows chi-square distribution with 1 degree of freedom. The mean of 

is 1, and its variance is 2. The first stage coarse energy detection  2|ω(n)| 

result can be expressed as                                                                        

T = 
1

𝛼𝑁𝑠
 ∑ |𝜔 (𝑛)|  2𝛼𝑁𝑠

𝑛=1                                                               (3.3)  

when no PU exists, and it follows Gaussian distribution with mean 1 and 

H0 = 2/(αNs) according to the central limit theorem. We set 2variance σ 

 = aσH0 = a √2/(𝛼𝑁𝑠)                                                              (3.4) ∆ 
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where a is a positive constant. When the number of samples becomes 

e of the first stage coarse energy = 2αNs, the varianc 2larger, e.g., Ns

detection result changes to 2/(2αNs) = 1/(αNs), and hence ∆ should be set 

as a √1/(𝛼𝑁𝑠) accordingly. Therefore, the larger the number of samples 

is, the smaller the value of ∆ should be.[30]                                              

3.3.2. The rules in setting λ1 

Remark 3: λ1 should be set according to the requirement of the false 

alarm probability (Pf ). In Case I as shown in Figure (3.1), λ1 is set 

relatively low (e.g., below 1). If no PU exists, the distribution of the first 

stage energy detection result is shown in Figure (3.1). The probability 

that the detection result is larger than λ1 + ∆ is so large that Pf cannot be 

set small (e.g., Pf = 0.01). In Case II as shown in Figure (3.1), λ1 is set 

relatively high (e.g., above 1). The probability that the detection result is 

smaller than λ1 − ∆ is so large that Pf cannot be set large (e.g., Pf = 0.5). 

For Pf above 0.5 is not meaningful in practical networks, λ1 is usually set 

above 1. Furthermore, if certain Pf can be achieved, the detection 

performance is better when λ1 is smaller. However, when λ1 becomes 

smaller, the probability indicating the need of second stage fine detection 

becomes larger when                                                                               

 

Figure (3.1): The distribution of the first stage energy detection. 
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SNR is low or no PU exists, which means the sensing time becomes 

longer and the energy consumption becomes larger.[30]                              

3.3.3. The rules in setting λ2 

 As analyzed above, we know that the parameters ∆ and λ1 determine the 

detection performance and the computational complexity of the 

algorithms. Thus, ∆ and λ1 should be set first according the requirements 

of the detection performance and energy consumption when applied to 

practical systems. λ2 can be set according to the values of ∆ and λ1 When 

∆ is fixed, λ2 should be set larger with smaller λ1. When λ1 is fixed, λ2 

should be set larger with larger ∆. With certain values of ∆ and λ1, the 

value of λ2 is deterministic. Thus, after λ1 and ∆ are set, λ2 can be set 

according to the required value of Pf through measurements in advance. 

The above rules in setting ∆, λ1, and λ2 are all suitable for both of the 

two proposed TSEEOB-CSS algorithms.[30]                                             

3.4. Analysis of energy-efficiency and time-saving performance  

Remark 4: The energy consumption and sensing time of the proposed 

schemes are reduced significantly compared to the conventional CSS 

scheme with the same number of samples, especially when the SNR of 

the PU signal is high or no PU exists. The probability of the local 

decision D1i in the first stage coarse detection at the ith SU equal to 1 and 

0 can be expressed, respectively, as                                                         

P1 = Q ( (λ1 + ∆ − γ − 1) √
𝛼𝑁𝑠

2(𝛾 + 1)2
  )  Pr(H1) + Q ( (λ1 + ∆ − 1) 

√
𝛼𝑁𝑠

2
) Pr(H0)                                                                                 (3.5) 
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P0 = ( 1− Q ( (λ1− ∆− γ −1) √
𝛼𝑁𝑠

2(𝛾 + 1)2
) )  Pr(H1) + ( 1−Q ( (λ1−∆−1) 

√
𝛼𝑁𝑠

2
) )  Pr(H0)                                                                            (3.6) 

where Pr(H1) and Pr(H0) = 1 − Pr(H1) denote the probabilities of the 

presence and absence of the primary signal, respectively.[31] The energy 

consumption of the spectrum sensing is mainly caused by the energy 

detection using the samples of the received signal at all the SUs, and we 

can define the energy consumption of the conventional CSS algorithm 

through a function of the number of the samples as                                    

(3.7)                                                                                     0es= KN CSSE 

is the number of samples at  swhere K is the number of SUs in the CSS, N

onding is the energy consumption corresp 0each SU in the detection, and e

to one sample of the detection.[31] The energy consumption of the first 

and second proposed TSEEOB-CSS algorithms can be expressed as          

       

−  K− i) 1(1 − P 𝑖
1 

P ∑ (
𝑘
𝑖  

𝑘

𝑖=[
𝑘

2
]+1

)1 −  ( 0)es+ K((1 − α)N0 esE1 = KαN

(3.8))                                  K− i ) 0P –(1  𝑖
0 

P ∑ (
𝑘
𝑖  

𝑘

𝑖=[
𝑘

2
]+1

) 

−  K− i) 1(1 − P 
𝑖
1 

P ∑ (
𝑘
𝑖  

𝑘

𝑖=[
𝑘

2
]+1

)1 −  (0 )es+ K((1 − α)N0 esE2 = KαN

(1−P1−P0)                                     (3.9)  )K− i ) 0P –(1  
𝑖
0 

P ∑ (
𝑘
𝑖  

𝑘

𝑖=[
𝑘

2
]+1

) 

From (3.8),(3.9), we can easily obtain 

(3.10)                                                                             CSS  E2 < E1 < E  
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Thus, we can conclude that the energy consumption is reduced 

significantly by the two proposed CSS schemes, and the energy 

consumption of the second TSEEOB-CSS algorithm is much lower than 

that of the first algorithm. Similarly, assuming the sensing time of the 

CSS algorithms is mainly determined by the energy detection using the 

samples of the received signal at all the SUs, the sensing time of 

conventional CSS algorithm can be defined through a function of the 

number of the samples as                                                                            

(3.11)                                                                                      0tsN=  CSST 

is the duration corresponding to one sample of the detection. The  0where t

sensing time of the first and second proposed TSEEOB-CSS algorithms is 

the same, and can be represented as                                                             

−  K− i) 1(1 − P 𝑖
1 

P ∑ (
𝑘
𝑖  

𝑘

𝑖=[
𝑘

2
]+1

)1 −  (0 )ts+ ((1 − α)N 0tsT1= T2 = αN

(3.12))                                K− i ) 0P –(1  𝑖
0 

P ∑ (
𝑘
𝑖  

𝑘

𝑖=[
𝑘

2
]+1

) 

From (3.11) and (3.12), we can obtain that  

T1 = T2 < TCSS                                                                          (3.13) 

 Thus, we can conclude that the time consumption is reduced significantly 

by the two proposed CSS schemes, and the time consumption of the two 

algorithms is the same. [30]                                                                           

The time and energy consumption of the proposed algorithms can be 

reduced effectively, and we will clarify it briefly. When there are PUs in 

the network, the first stage coarse energy detection result T follows a 

distribution with the mean of 1 + μs. If the SNR of PU signal is larger,     

1 + μs will be larger, and thus the probability that T > λ1 + ∆ will also 
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become larger. This means the probability indicating the need of second 

stage fine detection becomes smaller, and thus the sensing time and 

energy consumption will be reduced due to the low probability of the 

need of second stage fine detection.[32] When no PU exists in the 

network, the probability that T < λ1 − ∆ is relatively large because λ1 is 

usually set above 1. Therefore, the probability indicating the need of 

second stage fine detection is relatively small, and the sensing time and 

energy consumption will also be reduced greatly when no PU exists. 

From the above analysis, we can conclude that the sensing time and 

energy consumption is reduced greatly when the SNR of PU signal is 

high or no PU exists in the proposed two algorithms, and it enables a 

“green” CR network.[32]                                                                               
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Chapter Four 

Simulink And Result 

4.1. Simulating the Signal in MATLAB  

As we know that CR promises the secondary users access the spectrum 

which is allocated to a primary user, so avoiding interference to potential 

primary users is a basic requirement. Therefore, we should detect the 

primary user status through the continuous spectrum sensing. 

We use MATLAB to encode the output signal from the integrator with 

zero-mean AWGN. The output signal is in Chi-square distribution, we 

assume the Chi-square distribution as Gaussian distribution when samples 

are large, so we can encode the output signal from the integrator as: 

sig=sqrt(sigmas^2+sigman^2)*randn(100,N), which obeys the Gaussian 

distribution. Sigmas^2 is the variance of the signal waveform, sigman^2 

is the variance of AWGN, the operation randn distributes random 

numbers and arrays. Then we set the values of the parameters to simulate 

the signal: 

SNR = -10 dB (we take an example); the bandwidth W = 1×105 ; the 

observes time ts = 1×10-2 s; samples N = 2 × ts × W; the variance of the 

noise σn
2 =1×10-2  ; the variance of the received signal σs

2= (σs × 10-1)2 

(SNR= -10 dB); 
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Figure (4.1): output signal with AWGN 

Figure (4.1) is the simulated output signal with AWGN. The x-axis shows 

the samples we take and the y-axis shows the energy (units in dBm) of 

the signal. The figure shows the different signals‟ energy at different 

samples. 

4.2. Probability of false alarm and probability of miss detection 

The proposed scheme provides better probability of detection, reduced 

probability of false alarm and probability of miss detection and thus 

outperforms the existing hard decision-based technique for varied SNR 

conditions. The ROC plot between Probability of false alarm and 

probability of detection (Pd) for SNR=-10 dB 
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Figure (4.2): ROC plot between Probability of false alarm (Pfa) and 

probability of miss detection 

The ROC plot between Probability of false alarm (Pfa) and probability of 

miss detection for SNR = −10 dB is shown in Figure (4:2). The 

probability of miss detection is very low compared with the existing 

scheme. 

4.3. Receiver operating characteristic curve for simple energy 

detection 

This plot is for receiver operating characteristic curve for simple energy 

detection, when the primary signal is real Gaussian signal and noise is 

additive white real Gaussian. Here, the threshold is available analytically. 

It can also be thought of as a plot of the power as a function of the Type I 

Error of the decision rule (when the performance is calculated from just a 
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sample of the population, it can be thought of as estimators of these 

quantities). 

 

Figure (4.3): receiver operating characteristic curve for simple energy 

The ROC curve is thus the sensitivity or recall as a function of fall-out. In 

general, if the probability distributions for both detection and false alarm 

are known, the ROC curve can be generated by plotting the cumulative 

distribution function of the detection probability in the y-axis versus the 

cumulative distribution function of the false-alarm probability on the x-

axis . 

ROC analysis provides tools to select possibly optimal models and to 

discard suboptimal ones independently from (and prior to specifying) the 

cost context or the class distribution. ROC analysis is related in a direct 

and natural way to cost/benefit analysis of diagnostic decision making. 
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4.4. Probability of Detection in Energy Detection in Cognitive Radio 

 

Figure (4.4): ROC curve for SNR vs probability of detection 

SNR VS Probability of detection (P d ) for P f = 0.01 From Figure 6, it 

can be easily observed that the probability of detection for both cases 

proposed threshold result is more preferable than fixed threshold under 

low SNR values. 

This other example shows simulation for energy detection method of 

signal detection in cognitive radio and its probability of detection for 

different snr values with AWGN channel. 
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Figure (4.5): Probability of Detection in Energy Detection in Cognitive 

Radio 

with the increasing of the SNR (from 10 dB to 0) the detections we get 

also increased and within 7 dB and 5 dB, the increasing slope is the 

largest. So, the SNR influences the detections. It indicates that with the 

increasing of the SNR, the more spectrums which are occupied we can 

detect. 
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4.5. Cooperative sensing with AND rule under AWGN. 

 

Figure (4.6): Complementary ROC of Cooperative sensing with AND 

rule under AWGN. 

This assessment showed that the cooperation among CR users can result 

into significant improvement on the detection performance and 

compensating the degradation of the spectrum sensing execution caused 

by the possibly weak PU signals. Finally, the paper provided a 

verification of the validity of the OR- and AND- fusion schemes which 

were used for combining the individual decisions of CR users, where the 

deleterious impact for the fading effectively can be cancels by using these 

fusion decisions of various secondary users. 
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4.6. Calculate the threshold in energy detection by simulation. 

 This is a general method and applicable to all scenarios for energy 

detection. 

We assume that all the signals are complex Gaussian. 

Algorithm: 

1. Assume only noise is received, i.e., primary user is absent. 

2. If the only noise energy lies above the threshold, it corresponds to false 

alarm 

3. Run this scenario for some number of iterations. 

4. Probability of False Alarm = energy above threshold/No. of Iteration. 

Figure (4.7): The threshold in energy detection by simulation. 
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4.7. Optimization of Cooperative spectrum sensing in Cognitive radio 

network. 

This plot is for optimization of Cooperative spectrum sensing in 

Cognitive radio network. 

 

Figure (4.8): Optimization in cooperative spectrum sensing. 

Cooperative spectrum sensing and adapting to the environment, a 

cognitive radio is able to fill spectrum holes and serve without causing 

harmful interference to the licensed user. We consider optimization of 

cooperative spectrum sensing with energy detection to minimize the total 

error rate. 
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Chapter Five 

Conclusion And future work 

5.1. Conclusion 

In the past few years, with the growing demand for spectrum in various 

wireless applications and due to the inefficient spectrum utilization, there 

is a need to efficiently utilize the limited spectrum. Cognitive Radio plays 

an important role in such scenario and spectrum sensing is a vital aspect 

in CR. In this book various energy efficient spectrum sensing methods are 

studied. The usage of these techniques are application dependent. One 

can select a suitable sensing technique according to their application but 

they are not without demerits. The Energy efficient spectrum sensing 

techniques increases the overall network life time of the cognitive radio 

networks. But they are with their own merits and demerits. History 

assisted technique has an advantage that reduced SS saves energy but 

increased delay and loss of quality for time sensitive traffic is a demerit. 

In WSN assisted CRNs main advantage is that no energy is wasted by 

CRN through SS except for the cost of a dedicated sensor network. 

In RL based SS energy efficiency is achieved by minimizing the number 

of assigned sensors per each sub band under a constraint on miss 

detection probability but RL applications in clustering algorithms is still 

at infancy stage. 

Recent trends of EE SS are utilizing history or employing a dedicated 

WSN for SS. Integration of different techniques together can further 

improve energy efficiency. Residual energy per node is taken care the 

most in History assisted SS while other techniques concentrate only on 

overall system life time. RL is a better way of EESS compared to others 

but is still at the infancy stage. Apart from the cost of a dedicated WSNs, 
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WSN sensing the spectrum for CRNs is the best of all techniques as 

energy wasted by CRN in SS is almost zero. 

 

5.2. Future Work 

This phenomenal growth in wireless usage will be driven by new 

applications that embed computing power into the physical world around 

us   , helping to make the world safer and more accessible. Radio 

technology will be at the very heart of the future computing world - one 

in which billions of communicators, we anticipate that cognitive radio 

technology will soon emerge from early-stage laboratory trials and 

vertical applications to become a general-purpose programmable radio 

that will serve as a universal platform for wireless system development, 

much like microprocessors have served a similar role for computation. 

Also can be serve electronic circuit through design oscillator and FPGA 

systems [ 33,34] .  
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